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Abstract—Human evolution has continuously shewn his/her ability to innovate
and control his environment. Like, the industrial revolution and the information
technology eras, artificial intelligence (Al) is presented as a groundbreaking
technology that affects several areas of society.and could accelerate

engineering and scientific discoveryd{Research, design, and deployment of Al
have led to growing concern about a wide range of ethical, social, and scientific
methods. As Al boundaries continue to expand rapidly, it creates controversy for
those who love and want evidence: This paper provides evidence-based concerns
on Al data quality and availability, interpretability, generalization robustness

and trustworthiness;, uncertainty quantification, transparency, fairness, and ethics.
Further, this paper seeks to promote, with the infusion of Al in various fields,

the continuous development of science and engineering fundamentals minset.

erature shows common-sense that Al will greatly

speed Up Scienceras it becomes adopted in all
parts of the scientific pipeline. What is Al and what
is not? [1] provides an example that offers contrasts
betweenpasclearn,case of Al and non-Al: ... an insur-
ance pricing formula, for example, might be considered
Al if it was developed by having the computer analyze
past,.claims data, but not if it was a direct result of
expert knowledge, even if the actual rule was identical
in both cases. Al techniques have been developed to
analyze high-throughput data in order to obtain useful
information, categorize, predict, and make evidence-
based decisions in novel ways, which will promote the
growth of novel applications and fuel the sustainable
booming of Al. However, Al lacks the essence of hu-
man intelligence. It does not possess cognitive abilities,
consciousness, emotions, or self-awareness. Al lacks
the genuine understanding and subjective experiences
that make us human. Al operates purely on the basis
of predefined rules and patterns.

As interest in Al has grown, more scientific and en-

I n recent years, the summary of the existing lit-
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gineering fields are exploring whether Al can be used
to advance science [2]. For some problems, Al has
shown the potential to do so [3]. There are increasing
concerns about reproducibility in Al/Machine Learning-
based (ML) science and engineering [4]. Common
pitfalls include data leakage [4], poor data quality [4],
weak baselines, and inadequate external validation
[5]. In each case, the pitfalls result in overoptimistic
assessments of ML performance.

In the remainder of this paper, the Al correctness in
Section 2 describes the current and ongoing practices
of robustness, explainability & interpretability, trust-
worthiness, and uncertainty quantification. The social,
political and economic concerns in Section 3 describe
the regulatory environment, privacy, data collection,
economic impact, and environmental impact. Finally,
Section 4 presents the conclusions and recommenda-
tions.

Al as a scientific tool is required to produce accurate,
truthful, and reliable results. To keep the Al develop-
ment system formal and analyzable, this section dis-
cusses Al robustness, explainability & interpretability,
trustworthiness, and uncertainty quantification.

Computing in Science & Engineering



Robustness

Robustness is a goal for appropriate system function-
ality in a broad set of conditions and circumstances,
including uses of Al systems not initially anticipated.
Robustness requires not only that the system perform
exactly as it does under expected uses, but also that
it performs in ways that minimize potential harm to
people if it is operating in an unexpected setting [6]

The current lack of consensus on robust and verifi-
able measurement methods for risk and trustworthi-
ness, and applicability to different Al use cases, is
an Al risk measurement challenge. Potential pitfalls
when seeking to measure negative risk ofharm include
the reality that the development of ametrics is often
an institutional endeavor and may jinadvertently reflect
factors unrelated to the underlying impact.£In" addi-
tion, measurement approaches canbe oversimplified,
gamed, lack critical nuance,»become relied upon in
unexpected ways, or faildto account for differences in
affected groups and coftexts. Successful risk manage-
ment depends on a‘sense of collective responsibility
among Al actors [6].

When scientists rely on Al data that are not accu-
rate, questionstor investigation outcomes will also be
biased orferroneous ‘andycan cause major harm. To
illustrate, the following examples show concerns about
the reproducibility in ML-based science.

During the COVID-19 pandemic in late 2020, viral
infection testing kits werefscarce in some countries.
Therefore, “theyidea offdiagnosing infection with a
medicaltechnique that'was already widespread, chest
radiographs;, sounded appealing. Although the human
eyepcannot reliably discern differences between in-
fected and“non-infected individuals, a team in India
reported that artificial intelligence could do it, using
machine learning to analyze a set of X-ray images[7].
The paper, one of dozens of studies on the idea, has
been cited more than 900 times. But in September
of that year, computer scientists Sanchari Dhar and
Lior Shamir at Kansas State University in Manhattan
took a closer look [8]. They trained a machine learning
algorithm on the same images, but used only blank
background sections that showed no body parts at all.
However, their Al could still pick out COVID-19 cases
well above the chance level. The problem appeared
to be that there were consistent differences in the
backgrounds of the medical images in the data set.
An Al system could pick up on these artifacts to
succeed in the diagnostic task, without learning any
clinically relevant features, making it medically useless.
Shamir and Dhar found several other cases in which
a reportedly successful Al-based image classification,
from cell types to face recognition, returned similar
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results from blank or'meaningless parts of the images.
The algorithms performed better than chance in recog-
nizing faces without faces and cells'without cells. Some
of these,papers have been cited hundreds of times
(Figs. 1).[8]. “These examples might be amusing”,
Shamir says — but in _biomedicine, misclassification
could be a matterof life'and death. “The problem is
extremely common‘—a lot more common than most of
my colleagues would like to believe.” A separate review
in 2021 examined 62 studies using machine learning
to diagnose COVID-19 from chest X-rays or computed
tomography scans; it concluded that none of the Al
models was clinically useful due to methodological
flaws or biases in image data sets [5]. The errors
that Shamir and Dhar found are just some of the
ways in which machine learning can lead to misleading
claims in scientific research. In summary, autonomous
laboratories can run experiments a thousand times
faster, but they still do not know why something fails.
That is the main difference between intelligence and
understanding. Al can loop as many times, but only
humans can understand in learning.

Number of Al publications by select top topics, 2013-23
Source: Al Index, 2025 | Chart: 2025 Al Index report
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Computer scientists Sayash Kapoor and Arvind
Narayanan at Princeton University in New Jersey re-
ported earlier in 2023 that the problem of data leakage,
when there is insufficient separation between the data
used to train an Al system and those used to test it, has
caused reproducibility issues in 17 examined fields,
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affecting hundreds of papers [4]. They argue that naive
use of Al is leading to a reproducibility crisis.

Machine learning and other types of Al are powerful
statistical tools that have advanced almost every area
of science by picking out patterns in data that are
often invisible to human researchers. At the same
time, some researchers worry that unknowledgeable
or ill-informed use of Al products/software is driving a
deluge of papers with claims that cannot be replicated,
are wrong or useless in practical terms or in_the real
world. There has been no systematic estimatenof the
extent of the problem, but researchers say that,"anec-
dotally, error-strewn Al papers are everywhere. “This
is a widespread issue impacting /nany communities
beginning to adopt machine learning methods;” Kapoor
says [4].

There are many common mistakes ‘repeated over
and over. Aeronautical engineery, Lorena“Barba at
George WashingtondUniversity agrees that few;.if any,
fields are exempt from the, issyue. “I'm confident stating
that scientific machine learning in the physical sciences
is presentingswidespread problems,” she says. “And
this is net about lots. of, poor-quality or low-impact
papers,’ she adds. “| have read many articles in pres-
tigious|journals and conferences that compare with
weak baselines, exaggerate claims, fail to report full
computational costs, completely ignore limitations of
the work, or otherwise fail 1o provide sufficient informa-
tion, data or code to reproduce the results.” “There is a
proper wayito apply ML to test a scientific hypothesis,
and:many_scientists were never really trained properly
to do that'because the field is still relatively new,” says
Casey Bennett at DePaul University in Chicago, lllinois,
a specialist in the use of computer methods in health.
“| seena lot of common mistakes repeated over and
over,” he says. For ML tools used in health research,
he adds, “it's like the Wild West right now.”

As the above literature shows, a major concern
comes from the various and serious vulnerabilities dur-
ing the Al development stages. These vulnerabilities
could strongly impact the robustness of current Al
systems, leading them into uncontrolled behavior, and
allowing potential adversaries to deceive algorithms to
their own advantage. Because there is a gap between
the resulting scientific outcomes of research and the
legitimate expectations the society may have on this
novel technology, the scientific community must take
the measure of these concerns at an early stage and
start to provide technical solutions to increase the
robustness of Al systems.
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Explainability andInterpretability

Explainability refers to a representation of the mecha-
nisms.underlying Al systems’ operation, whereas inter-
pretability. refers to the meaning of Al systems’ output
in the context of their designed functional purposes.
Together, explainability’and interpretability help those
operating or overseeing an Al system, as well as
users of an, Al system, to gain deeper insights into
the functionality and trustworthiness of the system,
including its ‘outputs [6].

Interpreting and ensuring transparency in the op-
eration ofdAl systems is an important step towards
increasing user confidence, improving the quality of
decisions made, and minimizing the risks associated
with the use of Al in real life. Interpretability and trans-
parency of artificial intelligence require not only the
attention of developers and researchers, but also the
creation of appropriate standards aimed at improving
the explainability of Al solutions and their accessibility
to users [9]. Solving this problem is becoming critical
to ensuring the safety and reliability of Al systems, as
well as to minimizing the potential risks of their use in
everyday life. The more complex the model, the more
difficult it can be for humans to understand the steps
that led to its insights, even if those humans are the
ones who designed and built it.

Interpretability and transparency of Al systems are
crucial for their widespread use, as they enable verifi-
cation, increase trust, and reduce the risk of errors in
decision making. In this regard, research and develop-
ment in the field of interpretable Al models continues
to be one of the most important tasks in the modern
scientific and technological community [9]. Making Al
data interpretable has gained attention to improve the
understanding of a machine learning algorithm, despite
its complexity.

Machine learning applications may have multiple
acting hidden layers. It is difficult for humans to un-
derstand how they reach their conclusions, which is
commonly known as the “black-box problem” of Al
technology. The number and complexity of the model’'s
features directly affect the interpretability of the model.

Black-box Al models are more complicated and
offer less transparency into their inner workings. The
user generally does not know how the model reaches
its results. Because they are difficult or impossible
to understand, they come with concerns about their
reliability, fairness, biases, and other ethical issues.
Making black-box models more interpretable is one
way to build trust in their use.

A transparent system is not necessarily an accu-
rate, privacy-respecting, secure, or fair system. How-
ever, it is difficult to determine whether an opaque
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system possesses such characteristics and to do so
over time as complex systems evolve.

Inscrutable Al systems can complicate risk mea-
surement. Inscrutability can be the result of the opaque
nature of Al systems, i.e. limited explainability or inter-
pretability, lack of transparency or documentation in the
development or deployment of Al system, or inherent
uncertainties in Al systems [6].

Trustworthiness

Traditionally, scientific applications require réeliable pre-
diction with quantifiable error bounds. Al risks or fail-
ures that are not well-defined or adequately under-
stood are difficult to measure quantitatively or quali-
tatively. The inability to appropriately measurefAl risks
does not imply that an Al system necessarily poses a
high or low risk.

The risks posed by Al systems seem, unique in
many ways. Al system$§ may be trained on data that
can change over time following the dynamic envi-
ronment, sometimes- significantly and unexpectedly,
affecting system functionality and trustworthiness in
ways that areghard,to understand. Al systems and
the contexts in which'they. are deployed are frequently
complex, making it difficult\to detect and respond to
failures when they occur.tAl systems are inherently
socio-technical in nature, which means that they are
influenced by societal dynamics and human behavior
[6].

These risks'make Al a uniquely challenging tech-
nology 1o deploy and utilize, both for organizations
and.within society. Without proper controls, Al systems
can amplify, perpetuate, or exarcerbate inequinetable,
undesirable, or unexpected outcomes for consumers,
individuals, or communities. With proper design and
controls, Al systems can mitigate and manage in-
equitable outcomes. Understanding and managing the
risks of Al systems will help to enhance trustworthiness
and, in turn, cultivate public trust [6].

The refinement approach significantly reduces the
required testing efforts and, at the same time, sup-
ports a clear traceability of system properties through
various abstraction levels. The correctness of the re-
finement steps is validated by mathematical proofs.
However, it is still poorly integrated into the existing
software engineering process. Among the main rea-
sons hindering its application are complexity of carry-
ing proofs, lack of expertise in abstract modeling, and
insufficient scalability [10].

When it comes to the correctness of the mecha-
nistic model, too many Al research experiments lack
rigor and favor biases towards positive results, while
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reporting biases) lead tomunderreporting of negative
results [11]. It is'not a critique of individual researchers.
Competitive pressures from governments and research
institutions, tight timelines, and genuine excitement
about high=impact missions force everyone to move
fast. But progress in Al hinges on good science, and
good science hinges on good experiments. Experi-
ments show, when“new research ideas actually work.
The research society needs well designed experiments
so that researchers can develop better algorithms
based on empirical evidence and not just vibes. Re-
searchers smust balance designing experiments that
preserve causal interpretability.

Uncertainty Quantification

To understand, quantify and reduce uncertainties in
both computational models and real world systems
and to make predictions more reliable is the domain
of scientific uncertainty quantification (UQ). UQ is
sometimes obscured by the details of the applica-
tion. However, the complications that practical appli-
cations present are part of the essence of uncertainty
quantification. Thus, it is important to appreciate both
the underlying mathematics and the practicabilities of
implementation. UQ treats both types of uncertainty,
aleatory and epistemic, incorporates uncertainty due
to the mathematical form of the model, and provides a
procedure for including estimates of numerical error in
the predictive uncertainty.

Some of the most fundamental questions in UQ
are (i) How can we provide sufficiently reliable uncer-
tainties? and (i) How can we assess their reliability
a priori? While it is admirable to attempt to account
for all possible uncertainties, extrapolating uncertainty
quantification applications to situations that are far from
the original scenario is a significant challenge [12].

The UQ in artificial intelligence based predictions is
of immense importance for the success and reliability
of Al applications. A system built with a machine learn-
ing model will always encounter situations that differ
from all the previous samples used for training. There
are situations where Al cannot be supervised by a
human, and consequently, the Al itself needs to be able
to determine when there is a risk of an incorrect de-
cision: unfortunately, Al cannot think because thinking
is the domain of anthropomorphism, and assessment
of risk does not have validity when out-of-distribution,
especially when the mechanism is wrong. In order to
be trustworthy, in this case, it is crucial that the model
shows that it encounters an unknown situation where it
is forced to extrapolate its knowledge and emphasizes
that its outcome is therefore uncertain [13].
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To date, it seems infeasible to build Al models
that know how to function effectively in situations that
differ greatly from what the Al has seen during its
training time. For instance, Hendrycks and Gimpel
show that deep learning models that use the softmax
activation function in the last layer are bad at estimating
prediction uncertainty and often produce overconfident
predictions. It is not difficult to imagine that such
overconfident predictions can lead to catastrophic out-
comes such as in the medical domain [14].

The current methods for the quantification of un-
certainty using a deep neural network with a seftmax
output layer, an ensemble of deep neuralkinetworks [15]
and a deep Bayesian neural network({[16] manage to
show the uncertainty that arises from the distribution
samples. However, [17] shows that there is‘a’ clear
difference in how the investigated'methods quantify the
uncertainty and what samples they consSidered to be
uncertain: the correlations between thequantified un-
certainty of the different models are very low, showing
that there is an inconsistency inthe uncertainty.quan-
tification. This inconsistency needs to be understood
further and solved before Al can be used in critical
applications_inra trustworthy“and safe manner. Thus,
there is asneed for furtherstudy of uncertainty in deep
learning methods before‘these can‘be applied in real
world applications in an absolutely safe way.

Though Al revolution is reshaping various areas of
societyrand-paving the way for society into a new era
of exceptional advancements, research, design, and
deployment of Al have led to increasingly worrisome
concerns about a wide range of social, political, and
economic challenges. This section discusses the Al
regulatory environment, data collection, privacy con-
cerns, and economic and environmental impacts.

Regulatory Environment
Treating Al concerns related to the use of underly-
ing data to train Al systems will yield a more inte-
grated outcome and organizational efficiencies. The
Federal Communications Commission (FCC), National
Telecommunications and Information Administration
(NTIA) or others government regulatory agencies are
required to audit sensitive information and to put in
place regulatory measures to avoid compliance risks.
The EU Al Act is the world’s first comprehensive
risk-based Al regulation, entered into force on August
1, 2024, to govern Al development and usage. The EU
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Al Act prohibits unacceptable risk systems (e.g., social
scoring systems and manipulativeyAl), imposes strict
compliance on high:risk applications such as hiring,
mandates transparency obligation for general-purpose
Al models \(developers,and deployers must ensure
that end-usersyare aware that they are interacting
with_ Al chatbots and deepfakes), and minimal risk is
unregulated, such“asyAl enabled video games and
spam filters. However, the latter is changing with the
generative Al

Regulatory agencies can come together to create
norms and practices that help safeguard human auton-
omy, identity, dignity, and data quality and availability,
for instance. These norms and practices typically ad-
dress freedom from intrusion, limiting observation, or
individuals’ agency to consent to disclosure or control
of facets of their identities (e.g., body, data, reputation).
Al regulatory agencies must strive to offer resources to
the organizations researching, designing, developing,
deploying, or using Al systems to help manage the
many risks of Al and promote trustworthy and respon-
sible development and use of Al systems.

Based on the Artificial Intelligence Index Report
2025, U.S. states are leading the way on Al legislation
amid slow progress at the federal level. In 2016, only
one state-level Al-related law was passed, increasing
to 49 by 2023. In the past year alone, that number more
than doubled to 131. Although the proposed Al bills
at the federal level have also increased, the number
passed remains low. The number of U.S. Al-related
federal regulations skyrockets. In 2024, 59 Al-related
regulations were introduced—more than double the 25
recorded in 2023. These regulations came from 42
unique agencies, twice the 21 agencies that issued
them in 2023 [18].

On December 11, 2025, the Trump’s Administration
issued an executive order to ensure a National Policy
Framework for Atrtificial Intelligence. This executive or-
der initiates a federal push to limit state-level of Al and
its infrastructure. The resulting framework must forbid
State laws that conflict with the policy set forth in this
order. That framework should also ensure that children
are protected, censorship is prevented, copyrights are
respected, and communities are safeguarded. "A care-
fully crafted national framework can ensure that the
United States wins the Al race, as we must. Until such
a national standard exists, however, it is imperative
that my Administration takes action to check the most
onerous and excessive laws emerging from the States
that threaten to stymie innovation." says D. J. Trump.

State of Al from a Theoretical, Practical, Economic, and Environmental Perspective



Data Collection

Although Al holds great promise to improve detection
and efficiency, it also requires large amounts of data
to be properly trained and tested because details
and data quality matter in Al research. Historically,
development and evaluation of these algorithms have
been hindered by a lack of well-annotated, large-scale;
publicly available data sets.

Al needs data to decipher its hidden patterns,
trends, and correlations in real time. One of the key
drivers of substantive algorithmic improvements,in Al
systems has been the scaling of models and theirirain-
ing on ever-larger datasets. However,as the supply-of
internet training data becomes increasingly depleted,
concerns have grown about thefsustainability of this
scaling approach and the potentialfor a data bottle-
neck, where returns to scalé diminish. The Al Index of
last year, 2024, exploredarious factors'in this debate,
including the availability of existing, internet.data and
the potential for training models oh synthetic data. New
research in 2025 suggests that the current stock of
data may last longer than previously expected [18].

There are still'no official datasformats, and there-
fore, different systems store data‘in varied structures.
Different data formats may'cause inconsistent behavior
during imodel training or deployment time. In addition,
missing values or partial datasets lead to inaccurate
Al predictions and poor décisions. These issues affect
technical teams, operational efficiency, customer expe-
rience,and therefore the business. Without good data,
even the“best machine learning algorithms cannot
perform well: Many datasets in the real world are small,
dirty, biased, and even poisoned, limiting the training
of,accurate Al or ML models [19].

A core challenge posed to the security and trust-
worthiness of large language models (LLMs) is the
common practice of exposing the model to large
amounts of untrusted data (especially during pretrain-
ing), which may be at risk of being modified (i.e.
poisoned) by an attacker [20]. Poisoning attacks can
compromise the safety of large language models by
injecting malicious documents into their training data.
For large models, even small percentages translate
into impractically large amounts of data. [20] conducted
the largest pretraining poisoning experiments to date,
pretraining models from 600M to 13B parameters on
Chinchilla-optimal datasets (6B to 260B tokens). Au-
thors find that 250 poisoned documents similarly com-
promise models across all model and dataset sizes,
despite the largest models training on more than 20
times more clean data.
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Privacy

De-anonymization of data’sets ishayserious problem,
as even very redacted(data typically includes suffi-
cientiidentifying info_ to, when correlated with publicly
available“data, uniquely, identify most individuals in
the _data set. Al compounds this problem by being
substantially betterat pattern-matching and predictive
modeling. In_addition,”the use of Al in research can
lead to data commaodification, where personal identity
information from individuals is bought and sold without
their knowledge or consent.

Treating Al privacy concerns related to the use of
underlying data to train Al systems will yield a more
integrated outcome and organizational efficiencies.

To safeguard human autonomy, identity and dignity
are the norms and practices that refer to the subject of
privacy. These norms and practices typically address
freedom from intrusion, limiting observation, or indi-
viduals’ agency to consent to disclosure or control of
facets of their identities (e.g., body, data, reputation).
For the design, development, and deployment of the
Al system, privacy values such as anonymity, confi-
dentiality, and control should guide the choices. Like
safety and security, specific technical features of an Al
system can promote or reduce privacy. Al systems can
also present new risks to privacy by allowing inference
to identify individuals or previously private information
about individuals. Privacy-enhancing technologies for
Al, as well as data minimizing methods such as de-
identification and aggregation for certain model out-
puts, can support design for privacy-enhanced Al sys-
tems [6].

Managing Al data can face difficult decisions about
the balance of data characteristics. In certain scenar-
ios, tradeoffs may emerge between optimizing for in-
terpretability and achieving privacy. Under certain con-
ditions, data sparsity or privacy-enhancing techniques
can result in a loss in accuracy, affecting decisions
about fairness and other values in certain domains.

Economic Impact
According to the 2025 Artificial Intelligence Index Re-
port, Al models become increasingly bigger, more
computationally demanding, and more energy inten-
sive. New research finds that the training computation
for notable Al models doubles approximately every five
months, dataset sizes for training LLMs every eight
months, and the power required for training annu-
ally. Large-scale industry investment continues to drive
model scaling and performance gains [18].

Although Al companies rarely disclose exact train-
ing cost figures, costs are widely estimated to reach
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hundreds of millions of dollars and continue to rise.
OpenAl CEO Sam Altman, for instance, indicated that
training GPT-4 exceeded $100 million. In July 2024,
Anthropic CEO Dario Amodei noted that model training
runs costing around $1 billion were already underway.
Even more recent models, such as DeepSeek-V3,
reportedly cost less—about $6 million—but overall,
training remains extremely expensive [18].

Understanding the costs associated with training/Al
models remains important, yet detailed cost informa-
tion remains scarce. In 2024, the Al Index published
initial estimates on the costs of training foundation
models (Fig. 2a). In 2025, the Al Index, once again
partnered with Epoch Al to update and refine these
estimates. To calculate costs for cutting-edge models,
the Epoch team analyzed factors such as training du-
ration, hardware type, quantity, and utilization rates, re-
lying on information from academic publications, press
releases, and technical reports [18].

Measured in 16-bitfloating-point operations)Epoch
estimates that machine learning hardware “perfor-
mance has grown over the périod 2008—2024 at an
annual rate of approximately 43%, doubling every 1.9
years. According tonEpoch, this, progress has been
driven byfincreased transistor counts, advancements
in semiconductor manufacturing, and the development
of specialized hardware for Al workloads. Figure (2b)
illustrates\the peak computational performance of ML
hardware across different precision types, where pre-
cision refers to,the number of bits used to represent
numerical values, particularly floating-point numbers,
in computations. The choice of precision depends on
thesspecific goal. For instance, lower-precision hard-
ware, which‘requires fewer bits and has lower memory
bandwidth, is ideal for optimizing computation speed
and energy efficiency. This is particularly beneficial for
Al"models running on edge or mobile devices or in
scenarios where inference speed is a priority. However,
higher-precision hardware preserves greater numerical
accuracy, making it essential for scientific computing
and applications sensitive to precision errors. Of the
precisions visualized in the figure (2b), FP32 has the
highest precision, TF32 offers medium-high precision,
and Tensor-FP16/BF16 and FP16 are lower-precision
formats optimized for speed and efficiency.

Training Al systems requires substantial energy,
making the energy efficiency of machine learning hard-
ware a critical factor. Epoch Al reports that ML hard-
ware has become increasingly energy efficient over
time, improving by approximately 40% per year (Fig.
3a).

Despite significant improvements in the energy ef-
ficiency of Al hardware, the overall power consumption
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required to train Al"systéms_continues to rise rapidly.
Figure (3b) illustrates the total power draw, measured
in watts, to train‘various state-of-the-art Al models.
For éxample, the original Transformer, introduced in
2017, consumed an estimated 4,500 watts. In contrast,
PaLM, one of Google’s first flagship LLMs, had a power
draw of 2.6 million'watts—almost 600 times that of the
Transformer, Llama 3.1-405B, released in the summer
of 2024, required 25.3 million watts, consuming over
5,000 times more power than the original Transformer.
According to Epoch Al, the power required to train
frontier ALmodels is doubling annually. The increasing
power consumption of Al models reflects the trend of
training on increasingly larger datasets.

It is worth mentioning that the training costs do
not include the costs of all the hardware, which is
often outdated within 2-4 years, as well as the trillions
plus in buildouts planned over the next few years.
Moreover, the economic cost to everyone else through
increased cost of consumer electronics such as RAM
and SSDs have skyrocketed since 2025 due to high
demand from Al data centers. Additionally, the rapid
growth of Al is creating an unquenchable demand
for electricity, driving up power costs for businesses
and households, and prompting a massive investment
surge in infrastructure.

Environmental Impact
Carbon emissions from training frontier Al models have
steadily increased over time. Figure (4) illustrates the
carbon emissions of selected Al models, sorted by
their release year. While AlexNet's emissions were
negligible, GPT-3 (released in 2020) reportedly emitted
around 588 tons of carbon during training, GPT-4
(2023) emitted 5,184 tons, and Llama 3.1 405B (2024)
emitted 8,930 tons. DeepSeek V3, released in 2024,
and whose performance is comparable to OpenAl’s o1,
is estimated to have emissions comparable to the GPT-
3, released five years ago. For context, on average,
Americans emit 18.08 tons of carbon per capita per
year.

Figures (3b & 4) illustrate that the rapid evolution of
Al technologies is power hungry and has led to a signif-
icant increase in hyperscale data centers. These data
centers often require millions of watts of power, which
requires careful energy planning, servers, cooling sys-
tems, and the construction of data centers. The Al data
centers are increasing electricity demand and fueling
higher utility bills for consumers and households, and
price relief may not be coming anytime soon.

Al-workloads, especially large model training and
inference, have been shown to be highly energy-
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Estimated training cost of select Al models, 2019-24
Source: Epoch A, 2024 | Chart: 2025 Al Index report

io

200M

150M,

cost (in US dollars)
Y

100M

£ som

®
83

@

2

LaMDA

PaLM (5408) I 3

3
k|
H
b

Llama 3.-4058
Grok2

um,
s B i) | o)

207 | 20 | 2020 | 2021

2023

Peak computational performance of ML hardware for different precisions, 2008-24
Sourc: Epoch l, 2025 | Chart: 202 Al ldex oport

® FP2 © FPI6 ® TF2(9bi) © Tensor-FPIE/BFIS

.

l-.o'. %
R
Boiage o
:{:E

om
.

prrr
U TR &
. :
® o . . . °

1008}

108}
2008 2009 2010 201 2012 2013 2016 2015 2016 207 2018 2019 2020 2021 2022 2023 2024
Publication date

(a) Estimated training cost associated with select Al models, (b) Peak computational performance of ML hardware for

based on cloud compute rental prices.

different precigions, 2008-24

FIGURE 2:Estimated training cost

Energy efficiency of leading machine learning hardware, 2016-24
Sourc: Epoch Al 2025 | hart: 2025 Al ind rport
NVIDIA B200

NVIDIA H100 SXM5 80GB
Google TPU v4 Google TPU vSe

NVIDIA A100

a

NVIDIA Tesla V100 SXM2 32 GB

Google TPU V& NVIDIA B100/

Google TPU vai NVIDIA GB200 NVL2

NVIDIA P100

3
8

Google TPU V2

Energy efficiency (FLOP/s per watt - log scale)
g

8|
® Leading hardware
Non-leading hardware

Total power draw required to train frontier models, 2011-24
Source: Epoch Al, 2025 | Chart: 2025 Al Index report
GPTa  Llama 314058
e o o
M °°
o GPT-3 1758 (davinci) Chind
.

opaLM (5408

100K| 0

Total power draw required (watts - log scale)

1000
.

2016 201 2018 2019 2020 2021 2022 2023 2024

Publication date

(a) Energy efficiency of leading ML hardware, 2016-2024.

20m 2012 2013 2014 2015 2016 207 2018 2019 2020 2021 2022 2023 2024

Publication date

(b) Total power draw required to train frontier models

FIGURE 3: Al energy cost

intensive, leading to considerable growth in power
consumptioniin the datd center industry [21]. Grids
are ‘notyequipped for the rapid rise in hyperscale and
edge dataeenter loads due to other stressors, such as
aging transmission and distribution infrastructure, ca-
pacity-limitations, the integration of variable renewable
energy sources, and regional imbalances. The need
for,continuous, reliable, and sustainable power in these
settings presents a multifaceted challenge.

As” Al progresses and becomes more complex,
water consumption could become an ever-more press-
ing issue, particularly in areas where water is scarce.
Water is used in the cooling systems of data centers,
in the production of microchips used in Al models, and
in the production of electricity to power data centers
that run Al models. Depending on the complexity of
the model and the size of the required data center,
the water footprint can vary [22]. For example, GPT-
3, an Al model developed by OpenAl, reportedly con-
sumed approximately 700,000 liters of water during its
training phase. This is a staggering amount of water,
particularly when one considers that GPT-3 is just
one Al model among many. This increase in water
consumption could have several environmental con-
sequences, including water scarcity, increased energy
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use, and greenhouse gas emissions. Furthermore, the
withdrawal of large amounts of water from rivers and
streams can disrupt natural water flows and reduce
water availability for other uses, such as agriculture
and drinking water for humans and animals. This can
lead to reduced water quality, as well as a decline
in aquatic habitats and biodiversity. Another potential
consequence of the water consumption of Al systems
is the generation of wastewater. The cooling of data
centers generates large amounts of wastewater, which
can contain a range of pollutants. If this wastewater is
improperly treated, it can have negative environmental
consequences, including contamination of local water
supplies and the degradation of aquatic habitats. Addi-
tionally, the production and transportation of hardware
for Al systems also requires energy, which contributes
further to greenhouse gas emissions [22].

The climate changes, such as the extreme weather
that occurs at the present time, is one of the results of
global warming. This global warming occurs due to the
increasing levels of greenhouse gas concentrations in
the earth’s atmosphere. Greenhouse gases are gases
in Earth’s atmosphere that trap the heat from the
sun near the surface of our planet. Scientists have
found that things like burning coal for power plants or

January 2026



Estimated carbon emissions from training select Al models and real-life activities, 2012-24

Source: Al Index, 2025; Strubell et al., 2019 | Chart: 2025 Al Index report
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gasoline for carsrare,adding-more greenhouse gases
to the airf28]. Greenhouse gasestinclude nitrous ox-
ide, carbon dioxide, water wvapor, and methane. The
increasing change level over time of greenhouse gases
occurs'due to industrial activities. These industrial ac-
tivities require massive amounts of energy resources,
which are currently derivéd from the earth’s oil and gas
fields. Carbon'gas emissions are the release of carbon
dioxide ‘and,monoxide into the atmosphere as a result
ofyfossil fuelignition, thus global warming is increasing
rapidly-[24]. If the concentration of these greenhouse
gases, such as carbon dioxide, on earth atmosphere
goes out of equilibrium, i.e. becomes unusually high,
that can have a huge negative effect on the planet
earth ‘and therefore on life.

Rare earths are used in renewable energy tech-
nologies and are required for Al hardware production
such as data center components, batteries, and GPUs,
impose severe environmental costs. The environmen-
tal impacts such as radioactivity potential, acidifica-
tion, eutrophication, solid waste generation, water use,
significant greenhouse gas emissions, gross primary
energy footprint, toxicity and any other impact of sig-
nificance on regional and global basis should be taken
into consideration.

Al data centers urgently need low-carbon energy
resources to meet their demands and not conflict
their existence with climate goals and objectives. The
energy needs of Al-centric data centers may have
an impact on grid capacity and reliability. Extensive
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computing resources, often powered by fossil fuel-
based energy sources, are needed for the training and
operation of Al models. The Al infrastructure is sup-
ported by data centers and cloud computing facilities,
which significantly increase global energy consumption
and carbon footprint [25].

The purpose of this paper is not to diminish the sci-
entific contribution in Al and ML, but rather to assess
alignment with the rigorous scientific criteria for a true
model that is robust and trustworthy, interpretable,
uncertainty quantifiable, and takes into account privacy
concerns. The landscape is still evolving, and alterna-
tive perspectives must be explored and open questions
remain regarding the boundaries.

The lack of universally accepted definition or
methodology can potentially create confusion and di-
lute the expected outcome of Al. There are many
reasons scientists are concerned about the use of Al.
Among reasons include lack of large-scale, publicly
available data sets, and poor data quality or data may
be poisoned; lack of systematic refinement mechanism
rigor; models get increasingly bigger and therefore
more computationally demanding and more energy
intensive and therefore high carbon footprint; uncer-
tainty quantification prediction not reliable, which can
give rise to misleading claims in scientific research; its
deployment may raise ethical concerns around data

State of Al from a Theoretical, Practical, Economic, and Environmental Perspective



privacy, misinterpretation of data, data security, and
ownership; measurement approaches oversimplified;
and lack of transparency in the operation of Al systems
and therefore may encode structural biases. Based on
incorrect information or poorly trained models, that can
cause problems or potential harm if scientists use Al
to make major decisions. Building an Al model must
be done with responsibility and professionalism.

To mitigate the major negative impact of Al on
scientific and engineering research, some ideas are
suggested.

e Promote universal clear guidelinesfand protocols
for: data collection, ethical use of Al in research,
including data privacy, and ownership.

e Despite some models complexity, it is imperative
to seek to improve Al model documentation
clarity during the trainihg or deployment phase,
and therefore make Al data interpretable and
explainable, andclearly state the system limi-
tations.

e To assess the robustness of Al models, in par-
ticular to determine their field of action with
respecisto'thendata that have been used for the
training, the Al'regulators ‘must require the type
of mathematical model, or the context of use,
among others factors.

e For Al success and reliability, invest in Al uncer-
tainty, quantification/research to accurately tell
how"confident a«decision must be made in a
particular-prediction.

¢ Availability of a large amount of data and of
quality. open to academia and professional re-
searchers.

e Governments and Al stakeholder are suggested
to further promote rigorous Al education, to work
to increase security risks on data and ML models
that remain effective under malicious attack, to
continuously update regulation on Al responsive-
ness, and to make their designers accountable,
e.g. for auditability, reporting, responsibility.

e Environmental and societal well-being: to pro-
tect the environmental impacts, strict regulations
must be imposed to Al companies or associates
that have the dominance to produce high carbon
emissions and with implementation of manda-
tory disclosures on their activities. Unacceptable
environmental risk must be prohibited.

e Finally, this research recommends continuous
support to fund robust high-fidelity scientific
computing alongside Al to ensure that we have
relevant simulations to compare against Al re-
sults.

State of Al from a Theoretical, Practical, Economic, and Environmental Perspective

Acknowledgment

The author is grateful to ded Brown, and the PhyPID
research group for conversation and support during
summer»2025 contributing to the libCEED software
project.

—_

. A. Narayanan and S. Kapoor, “Al snake oil: What
artificial intelligence can do, what it can’t, and how
to tell the difference,” 2025.

2. GaKaragiorgi, G. Kasieczka, S. Kravitz, B. Nachman,
and D. Shih, “Machine learning in the search for
new fundamental physics,” Nature Reviews Physics,
vol. 4, no. 6, pp. 399-412, 2022.

3. J. Jumper et al., “Highly accurate protein struc-
ture prediction with alphafold. nature596, 583-589
(2021),” Cited on, p. 28.

4. S. Kapoor and A. Narayanan, “Leakage and the
reproducibility crisis in machine-learning-based sci-
ence,” Patterns, vol. 4, no. 9, 2023.

5. M. Roberts, D. Driggs, M. Thorpe, J. Gilbey, M. Ye-
ung, S. Ursprung, A. I. Aviles-Rivero, C. Etmann,
C. McCague, L. Beer et al., “Common pitfalls and
recommendations for using machine learning to de-
tect and prognosticate for covid-19 using chest radio-
graphs and ct scans,” Nature Machine Intelligence,
vol. 3, no. 3, pp. 199-217, 2021.

6. N. Al, “Artificial intelligence risk management frame-
work (Al rmf 1.0),” URL: htips:/nvipubs. nist.
gov/nistpubs/ai/nist. ai, pp. 100—1, 2023.

7. A. I. Khan, J. L. Shah, and M. M. Bhat, “Coronet:
A deep neural network for detection and diagno-
sis of covid-19 from chest x-ray images,” Computer
methods and programs in biomedicine, vol. 196, p.
105581, 2020.

8. S. Dhar and L. Shamir, “Evaluation of the benchmark
datasets for testing the efficacy of deep convolutional
neural networks,” Visual informatics, vol. 5, no. 3, pp.
92-101, 2021.

9. V. Orobinskaya, T. Mishina, A. Mazurenko, and
V. Mishin, “Problems of interpretability and trans-
parency of decisions made by Al in 2024 6th In-
ternational Conference on Control Systems, Mathe-
matical Modeling, Automation and Energy Efficiency
(SUMMA). |EEE, 2024, pp. 667—671.

10. A. lliasov, E. Troubitsyna, L. Laibinis, and A. Ro-
manovsky, “Patterns for refinement automation,” in In-
ternational Symposium on Formal Methods for Com-
ponents and Objects. Springer, 2009, pp. 70-88.

11. N. McGreivy and A. Hakim, “Weak baselines and

reporting biases lead to overoptimism in machine

learning for fluid-related partial differential equations,”

January 2026



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

January 2026

Nature machine intelligence, vol. 6, no. 10, pp. 1256—
1269, 2024.

J. O. Berger and L. A. Smith, “On the statistical for-
malism of uncertainty quantification,” Annual review
of statistics and its application, vol. 6, no. 1, pp. 433—
460, 2019.

V. Kuleshov, N. Fenner, and S. Ermon, “Accurate
uncertainties for deep learning using calibrated re-
gression,” in International conference on machine
learning. PMLR, 2018, pp. 2796—2804.

D. Hendrycks and K. Gimpel, “A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks,” arXiv preprint arXiv:1610:02136,
2016.

B. Lakshminarayanan, A. Pritzel, and C. Blundell,
“Simple and scalable predictive uncertainty estima-
tion using deep ensembles,” Advances{in neural in-
formation processing systems, val. 80, 2017.

Y. Gal and Z. Ghahramani, “Dropout as,a bayesian
approximation: Representing snodel uncertainty in
deep learning{” in international conference on ma-
chine learning.“ PMLR, 2016, pp. 1050—1059.

N. Stahl, G. Falkman, A. Karlsson, and G. Mathia-
son, “Evaluation,of uncertainty quantification in deep
learning,” in International “Conference on Informa-
tion Processing and Management of Uncertainty in
Knowledge-Based Systems.  Springer, 2020, pp.
556-568.

N. Maslej, L. Fattorini, R. Perrault, Y. Gil, V. Parli,
N. ‘Kariuki, E. Capstick, A. Reuel, E. Brynjolfsson,
J. Etchemendy ‘et al., “Artificial intelligence index
report 2025,” arXiv preprint arXiv:2504.07139, 2025.
S. E:-Whang, Y. Roh, H. Song, and J.-G. Lee, “Data
collection and quality challenges in deep learning:
A data-centric Al perspective,” The VLDB Journal,
vol. 32, no. 4, pp. 791-813, 2023.

A. Souly, J. Rando, E. Chapman, X. Davies, B. Hasir-
cioglu, E. Shereen, C. Mougan, V. Mavroudis,
E. Jones, C. Hicks et al., “Poisoning attacks on lims
require a near-constant number of poison samples,”
arXiv preprint arXiv:2510.07192, 2025.

P. Parikh, M. Ali, N. Virani, and S. C. Evans, “Strain to
synergy: Powering Al data centers with sustainable
and smart power grid infrastructures,” in 2025 IEEE
International Conference on Communications, Con-
trol, and Computing Technologies for Smart Grids
(SmartGridComm). |EEE, 2025, pp. 1-6.

A. S. George, A. H. George, and A. G. Martin,
“The environmental impact of Al: a case study of
water consumption by chat gpt,” Partners Universal
International Innovation Journal, vol. 1, no. 2, pp. 97—
104, 2023.

H. Boesch, Y. Liu, J. Tamminen, D. Yang, P. I. Palmer,

25.

H. Lindquist, Z.Cai, K»Che, A. DiNoia, L. Feng et al.,
“Monitoring greenhouse gases,from space,” Remote
Sensing, vol. 13, no. 14, p. 2700, 2021.

. B. Hapsoro etal, “Antecedents and consequences of

carben emissions'disclosure: Case study of oil, gas
and“coal,companies,in non-annex 1 member coun-
tries,” Journal of Indonesian Economy and Business:
JIEB,, vol. 38, no. 2, pp. 99-111, 2018.

D. €hauhan, P. Bahad, and J. K. Jain, “Sustain-
able Al: environmental implications, challenges, and
opportunities,” Explainable Al (XAl) for sustainable
devélopment, pp. 1-15, 2024.

State of Al from a Theoretical, Practical, Economic, and Environmental Perspective

11



	Correctness
	Robustness
	Explainability and Interpretability
	Trustworthiness
	Uncertainty Quantification

	Social, Political, and Economic Concerns
	Regulatory Environment
	Data Collection
	Privacy
	Economic Impact
	Environmental Impact

	Conclusions and Recommendations
	REFERENCES
	REFERENCES

